Coding/이코테

[이코테]최단 경로 구현 코드

seomj 2023. 7. 13. 19:25

다익스트라 알고리즘

한 지점에서 다른 특정 지점까지의 최단 경로를 구해야 하는 경우에 사용할 수 있는 최단 경로 알고리즘

 

그리디 알고리즘: 매 상황에서 방문하지 않은 가장 비용이 적은 노드를 선택해 임의의 과정을 반복

단계를 거치며 한 번 처리된 노드의 최단 거리는 고정되어 더 이상 바뀌지 않음

한 단계당 하나의 노드에 대한 최단 거리를 확실히 찾는 것으로 이해할 수 있음

 

간단한 다익스트라 알고리즘 소스코드

import sys
input = sys.stdin.readline
INF = int(1e9)

n, m = map(int, input().split())
start = int(input())
# 각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트를 만들기
graph = [[] for i in range(n+1)]
# 방문한 적이 있는지 체크하는 목적의 리스트를 만들기
visited = [False] * (n+1)
# 최단 거리 테이블을 모두 무한으로 초기화
distance = [INF] * (n+1)

# 모든 간선 정보를 입력받기
for _ in range(m):
    a, b, c = map(int, input().split())
    # a번 노드에서 b번 노드로 가는 비용이 c라는 의미
    graph[a].append((b, c))

# 방문하지 않은 노드 중에서, 가장 최단 거리가 짧은 노드의 번호를 반환
def get_smallest_node():
    min_value = INF
    index = 0
    for i in range(1, n+1):
        if distance[i] < min_value and not visited[i]:
            min_value = distance[i]
            index = i
    return index

def dijkstra(start):
    # 시작 노드에 대해서 초기화
    distance[start] = 0
    visited[start] = True
    for j in graph[start]:
        distance[j[0]] = j[1]
    # 시작 노드를 제외한 전체 n-1개의 노드에 대해 반복
    for i in range(n-1):
        # 현재 최단 거리가 가장 짧은 노드를 꺼내서, 방문 처리
        now = get_smallest_node()
        visited[now] = True
        # 현재 노드와 연결된 다른 노드를 확인
        for j in graph[now]:
            cost = distance[now] + j[1]
            # 현재 노드를 거쳐서 다른 노드로 이동하는 거리가 더 짧은 경우
            if cost < distance[j[0]]:
                distance[j[0]] = cost

dijkstra(start)

# 모든 노드로 가기 위한 최단 거리를 출력
for i in range(1, n+1):
    # 도달할 수 없는 경우, 무한이라고 출력
    if distance[i] == INF:
        print("INF")
    else:
        print(distance[i])

 

개선된 다익스트라 알고리즘 소스코드

우선순위 큐를 사용

import heapq
import sys
input = sys.stdin.readline
INF = int(1e9)

n, m = map(int, input().split())
start = int(input())
graph = [[] for i in range(n+1)]
distance = [INF] * (n+1)

for _ in range(m):
    a, b, c = map(int, input().split())
    graph[a].append((b, c))

def dijkstra(start):
    q = []
    # 시작 노드로 가기 위한 최단 경로는 0으로 설정하여, 큐에 삽입
    heapq.heappush(q, (0, start))
    distance[start] = 0
    while q: # 큐가 비어있지 않다면
        # 가장 최단 거리가 짧은 노드에 대한 정보 꺼내기
        dist, now = heapq.heappop(q)
        # 현재 노드가 이미 처리된 적이 있는 노드라면 무시
        if distance[now] < dist:
            continue
        # 현재 노드와 연결된 다른 인접한 노드들을 확인
        for i in graph[now]:
            cost = dist + i[1]
            # 현재 노드를 거쳐서, 다른 노드로 이동하는 거리가 더 짧은 경우
            if cost < distance[i[0]]:
                distance[i[0]] = cost
                heapq.heappush(q, (cost, i[0]))

dijkstra(start)

for i in range(1, n+1):
    if distance[i] == INF:
        print("INF")
    else:
        print(distance[i])

 

 

플로이드 워셜 알고리즘

모든 지점에서 다른 모든 지점까지의 최단 경로를 모두 구해야 하는 경우에 사용할 수 있는 알고리즘

 

2차원 테이블에 최단 거리 정보를 저장

 

다이나믹 프로그래밍 유형에 속함

 

a에서 b로 가는 최단 거리보다 a에서 k를 거쳐 b로 가는 거리가 더 짧은지 검사

=> 각 단계마다 특정한 노드 k를 거쳐 가는 경우를 확인 

 

INF = int(1e9)

n = int(input())
m = int(input())

graph = [[INF]*(n+1) for _ in range(n+1)]

# 자기 자신에서 자기 자신으로 가는 비용은 0으로 초기화
for a in range(1, n+1):
    for b in range(1, n+1):
        if a == b:
            graph[a][b] = 0

# 각 간선에 대한 정보를 입력받아, 그 값으로 초기화
for _ in range(m):
    # A에서 B로 가는 비용은 C라고 설정
    a, b, c = map(int, input().split())
    graph[a][b] = c

# 점화식에 따라 플로이드 워셜 알고리즘을 수행
for k in range(1, n+1):
    for a in range(1, n+1):
        for b in range(1, n+1):
            graph[a][b] = min(graph[a][b], graph[a][k]+ graph[k][b])

# 수행된 결과를 출력
for a in range(1, n+1):
    for b in range(1, n+1):
        #도달할 수 없는 경우, 무한이라고 출력
        if graph[a][b] == INF:
            print("INF", end=" ")
        else:
            print(graph[a][b], end=" ")
    print()

 

 

 

<출처>

이것이 취업을 위한 코딩테스트다 with 파이썬